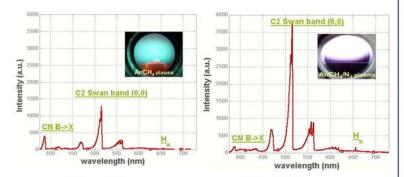
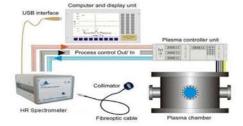
Correlation of CN/C₂ Ratios to Ultrananocrystalline Diamond (UNCD) Film Properties in Microwave Plasmas


D.M. Gruen and P. Bruno Materials Science Division, Argonne National Laboratory

Introduction

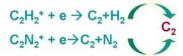
- UNCD thin films consist of 2-5 nm grains of pure sp³-bonded carbon and 0.5 nm wide grain boundaries (GB).
- Such films have interesting properties closely connected to their unique nanoscale morphology and electronic structure.
- The addition of nitrogen to the CH₄/Ar synthesis gas, has a profound impact on UNCD film electrical conductivity leading to the highest known ambient temperature n-type conductivity of any diamond thin film.


Major accomplishments

 Optical Emission Spectroscopy (OES) study of CN/C₂ ratios as a function of nitrogen content and chamber pressure has been conducted on the plasma phase of a conventional MW CH₄-Ar-rich gas mixture used for UNCD film deposition.

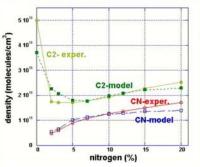
OES Ar-CH₄ plasma 100 Torr, 800 W, 800 °C

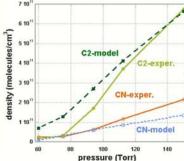
OES Ar-CH₄-N₂ plasma 100 Torr, 800 W, 800 °C


OES experimental setup

- At measured gas temperature of 1600 K for these plasmas, a substantial fraction of the CH₄ in the feed gas is thermally converted into C₂H₂ that in presence of nitrogen will form HCN.
- We proposed a thermodynamic equilibrium reaction to explain the decreases in C₂ and increases in CN concentrations observed in the OES analysis:

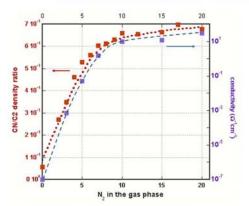
(1) $C_2H_2+N_2 \rightarrow 2HCN K_{eq}=0.15$


(2) 2HCN \rightarrow C₂N₂+H₂ K_{eq}=6.47e-3


and a plasma chemistry model:

HCN⁺ + e \rightarrow H + CN C₂N₂⁺ + e \rightarrow 2CN

O.A. Williams et al., Applied Physics Letters 85, 1680 (2004).


Simulated (--- curve) and experimental (— line) plots as a function of the N₂ addition to the plasma phase.

Simulated (--- curve) and experimental (— line) plots as a function of total chamber pressure.

Model works !!!!

C₂ comes both from the fragmentation of C₂H₂ and C₂N₂ and that CN comes from the fragmentation of both HCN and C₂N₂, as predicted from the model.

Correlation CN/C2 ratio with film properties

CN/C₂ density ratio and conductivity as a function of N₂ in the plasma.

 $log(K \cdot Conductivity) \approx CN/C_2$

Significance

 For the first time a very strong correlation has been observed between the OES results on the plasma used for UNCD deposition and the film electrical properties itself.

Future directions

- Further investigations in order to explain the correlation pointed out between the plasma phase and the electrical conductivity.
- Development of a coherent theory able to explain the electrical conductivity observed in n-type UNCD films as nitrogen is added to the plasma.
- · Future implements of n-type UNCD films in electronic applications.

